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ABSTRACT

Classification of non-small-cell lung cancer (NSCLC) into adenocarcinoma (LUAD) and squamous cell carcinoma
(LUSC) via histopathology is a vital prerequisite to select the appropriate treatment for lung cancer patients.
Most machine learning approaches rely on manually annotating large numbers of whole slide images (WSI) for
training. However, manually delineating cancer areas or even single cancer cells on hundreds or thousands of slides
is tedious, subjective and requires highly trained pathologists. We propose to use Neural Image Compression
(NIC), which requires only slide-level labels, to classify NSCLC into LUSC and LUAD. NIC consists of two
phases/networks. In the first phase the slides are compressed with a convolutional neural network (CNN) acting
as an encoder. In the second phase the compressed slides are classified with a second CNN. We trained our
classification model on >2,000 NIC-compressed slides from the TCGA and TCIA databases and evaluated the
model performance additionally on several internal and external cohorts. We show that NIC approaches state of
the art performance on lung cancer classification, with an average AUC of 0.94 on the TCGA and TCIA testdata,
and AUCs between 0.84 and 0.98 on other independent datasets.
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1. INTRODUCTION

Lung cancer is the third most common cancer in men and women and the leading cause of cancer-related deaths
worldwide.1 About 80-85% of all lung cancers is non-small cell lung cancer (NSCLC).2 The main subtypes of
NSCLC are adenocarcinoma (LUAD), squamous cell carcinoma (LUSC) and large cell carcinoma, with LUAD and
LUSC representing the vast majority of lung cancer cases. The subtype identification is important to determine
the best treatment options for the patient. Here, we focus on classification of LUAD versus LUSC.

Deep Learning on whole slide images (WSI) can automate or augment the histological analysis and reduce its
time, effort and subjective bias. Most deep learning approaches, however, require experienced pathologists to
create many pixel- or patch-level annotations of the tissue type, which is very tedious and time-consuming.3 The
alternative is a weakly supervised learning approach to image classification, where only slide-level labels are used
to train the deep learning model. In the context of weakly supervised learning, some approaches are based on
the simplifying assumption that all patches in a slide are predictive for the slide-level label.4,5 After training
a network to predict the slide label for each patch of the slide, the patch predictions are aggregated to form a
prediction for the whole slide. These approaches have been successfully applied to lung cancer classification4

including mutation prediction.5 A more nuanced approach is pursued in Multiple Instance Learning (MIL). In
MIL, a slide is viewed as a collection of small patches, where only a few patches or even a single one determine
the slide label. A MIL-approach developed to separate normal from cancerous slides was successfully evaluated on
a large-scale datasets of prostate cancer, basal cell carcinoma and breast cancer metastases.6 This approach was
recently extended to multi-class classification with attention (CLAM7), achieving a high accuracy in lung and
kidney cancer subtyping. The main components of CLAM are attention-weighted pooling and attention-driven
clustering.

While effective in many scenarios, MIL-based approaches ignore the possibility of global slide-level patterns
being important for prediction, since the slide-level classifier sees only tiny fractions (i.e., patches) of the slide at
a time. Giving a neural network the opportunity to ‘see’ the complete slide is however challenging due to the



Figure 1: Overview of the NIC framework. The CNN Encoder compresses the whole slide image in the spatial dimensions
W and H to W’�W, H’�H while increasing the depth to C. The CNN Classifier classifies the compressed image.

large slide sizes. Naively, it would require several hundred Gigabytes of RAM to process slides completely. Neural
Image Compression (NIC)8 bypasses this problem by strongly compressing slides before processing them.

Here, we propose to use NIC to classify whole slide images into LUSC and LUAD. We show that it can
approach state-of-the-art performance currently set by CLAM7 on publicly available datasets of lung cancer
histopathology images from two different sources, namely the TCGA and the TCIA archives. For comparison, we
set up the training and evaluation routine similar to the CLAM experiments for lung subtype classification as
well as test our method on additional independent datasets.

2. MATERIALS

For model training, we collected 2409 NSCLC resection slides from The Cancer Imaging Archive (TCIA)9 and
The Cancer Genome Atlas (TCGA).10 The slides from TCIA were part of a program by the National Cancer
Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC). The combined TCGA + CPTAC datasets
were used for model training and testing, as done in.7 For further testing, we included additional independent
datasets from multiple sources: a) n=64 resection slides from the computational precision medicine challenge
at the MICCAI 2017 conference;11 b) n=60 NSCLC resection slides from Radboud University Medical Center,
Nijmegen (Netherlands), which we name here ”Radboud60”; c) n=103 of the 150 slides from the training set
of the ACDC challenge.12 These slides were provided with manual annotations of tumor regions, which were
not used in this project. Since no information about the lung cancer subtype was provided in ACDC, a lung
pathologist (KG) checked all ACDC training slides and determined the subtype. Among those, 103 slides were
found to be either LUAD or LUSC, which were finally used in this study. Furthermore, we divided those slides
into resections (32) and biopsies (71). Table 1 provides an overview of the slide numbers and the split in training,
validation and testing, where appropriate (only data from TCGA and CPTAC was used for training). To the
best of our knowledge, there is no overlap between the datasets. Similar to the CLAM experiments, we split the
TCGA and CPTAC data into traninig, validation and testing randomly ten times and trained for each split a
model independently.

Dataset LUSC LUAD Training/Validation/Testing

TCGA 505 531 80/10/10 (%)
CPTAC 689 684 80/10/10 (%)
MICCAI 32 32 -/-/100 (%)
ACDC resections 15 17 -/-/100 (%)
ACDC biopsies 49 22 -/-/100 (%)
Radboud60 28 32 -/-/100 (%)

Table 1: Overview of the datasets used in this study.

3. METHODS

A whole slide image can be as large as 50.000x50.000 pixels or more and is often referred to as a gigapixel
image. Since it is not possible to fit the entire slide into memory on modern GPU hardware, most deep learning
approaches work either on smaller sub-crops or patches or try to reduce the input size. The latter is the main



(a) NIC-D

(b) NIC-A
Figure 2: Evaluated NIC-classifier architectures: NIC-D (top) and NIC-A (bottom); the shorthand notation fxfconv-n
stands for a fxf convolution with n output channels. The attention-pooling operation (∗) stands for the sum of all
patch-feature-vectors weighted by the attention-scores (one attention weight per patch-feature).

focus of Neural Image Compression8,13 for WSI classification (see Fig. 1). It consists of two phases: First, the
slides are compressed using a pretrained convolutional neural network. This encoder is responsible for extracting
useful features as well as accounting for stain variation. Then, a second network is trained on the compressed
slides to predict their labels. In our experiments, we compressed a 128x128x3 patch to 128 features, achieving a
compression factor of 384, e.g. reducing a slide of 50,000x50,000 to 390x390x128, which fits into GPU memory.

While the initial version of NIC8 used encoders trained in an unsupervised way, it was recently shown13 that
an encoder trained to classify patches for multiple tasks (not related to the slide-classification task) resulted in
learning a better representation of the histopathology image data. In this paper, we use this multi-task encoder
for compressing the lung slides. The encoder was trained on overall 800,000 patches of size 128x128 for four tasks:
axillary lymph node tumor metastasis detection, mitosis detection in breast, prostate epithelium detection, and
colorectal cancer tissue type classification. Note that no lung tissue was used to train the encoder. Details of the
encoder and the used datasets can be found in13 and.14 The encoder and code examples for its usage are publicly
available.15

For the classifier CNN we evaluated two architectures: A small DenseNet16-like model (NIC-D) and the
slightly adapted attention-architecture of CLAM (NIC-A). NIC-D (see Fig. 3a) consists of a single DenseBlock
with three layers having growth rate 32 and dropout. Before the final sigmoid layer, global max pooling is applied.
The first layer in the network was set to a 3x3 convolution with ReLU activation. The classifier has overall seven
convolutional layers and 145 thousand trainable parameters, half of them in the first layer. NIC-A (see Fig. 3b)
consists of a convolutional layer, followed by attention-pooling (attention-weighted sum of all encoded patches)
and a classification layer. The difference to the original CLAM-classifier architecture is the addition of the first
layer and the reduction of the number of features. The classifier has overall 181 thousand trainable parameters,
most of them (147 thousand) in the first layer.

We trained the classifiers on the encoded slides from CPTAC and TCGA. The slides were encoded with flip-
and rotation-augmentations resulting in 8 encodings per slide. While an encoded slide fits into memory, fitting
many slides at once as part of a training mini-batch is still not possible. To increase the batch size, during
training, crops of size 200x200x128 were taken, which approximately corresponds to the average compressed



Model TCGA+CPTAC MICCAI Radboud60 ACDC resections ACDC biopsies

NIC-D 0.949 ± 0.012 0.975 ± 0.011 0.967 ± 0.014 0.898 ± 0.028 0.843 ± 0.022
NIC-A 0.944 ± 0.009 0.982 ± 0.008 0.978 ± 0.011 0.960 ± 0.0218 0.853 ± 0.023

Table 2: AUC values assessed on the test datasets.
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NIC-D: Mean ROC over 10 models

TCGA+CPTAC Testsets (AUC = 0.949 ± 0.012)
MICCAI (AUC = 0.975 ± 0.011)
Radboud60 (AUC = 0.967 ± 0.014)
ACDC Resections (AUC = 0.898 ± 0.028)
ACDC Biopsies (AUC = 0.843 ± 0.022)
Chance
± 1 std. dev.

(a) NIC-D
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NIC-A: Mean ROC over 10 models

TCGA+CPTAC Testsets (AUC = 0.944 ± 0.009)
MICCAI (AUC = 0.982 ± 0.008)
Radboud60 (AUC = 0.978 ± 0.011)
ACDC Resections (AUC = 0.960 ± 0.018)
ACDC Biopsies (AUC = 0.853 ± 0.023)
Chance
± 1 std. dev.

(b) NIC-A
Figure 3: Mean ROC over 10 models trained each for CPTAC+TCGA split with NIC-D (left) and NIC-A (right).
’Positive’ refers to the LUAD class.

slide size in the TCGA+CPTAC dataset. This can be also seen as a form of crop augmentation. Since lung
cancer often covers large slide areas, most crops contain cancerous tissue. During testing, the complete slides were
processed (made possible by fully convolutional layers and global pooling). For training we used the cross-entropy
loss with the Adam optimizer. The ROC-AUC score on the validation set was used to reduce the learning rate on
plateaus after 10 epochs and to stop early when there was no more improvement after 30 epochs. Finally, the
network with the highest validation AUC was selected.

4. RESULTS

During training the models usually converge to 0.99 training AUC after about 60 epochs. The resulting average
receiver operating characteristic (ROC) curves and corresponding area under the curve (AUC) values for the
ten models on the TCGA+CPTAC testsets and the other datasets are depicted in Figure 3 and Table 2. Both
classifier architectures achieve AUC values >0.94 on most datasets. NIC-A outperforms NIC-D on all external
datasets and is only slightly worse on the TCGA+CPTAC testset.

To better understand the inner workings of the networks we visualized what the networks ’look’ at. For NIC-A
this is the attention-heatmap, for NIC-D we use gradcam,17 a technique to highlight parts of the input responsible
for the networks decision. Fig. 4 shows the NIC-D gradcam and the NIC-A attention heatmaps for a LUAD
and a LUSC case from ACDC. In the LUAD case the prediction of both models was correct. In the LUSC case,
NIC-D wrongly predicted the case to be LUAD while the prediction of NIC-A was correct. The comparison of
the heatmaps shows that the attention of NIC-A is much more sparse than the gradcam of NIC-D. NIC-A selects
only a few patches and ignores the other. NIC-D focuses on more patches, but not all tumor-patches (inside the
blue polygon-annotations). It also focuses on non-tumor tissue, in other cases even more then on tumor-tissue.
This might be responsible for the wrong prediction for the shown LUSC slide, where beside activations in the
tumor-regions also activations in wide areas with i.e. necrosis occurred.



(a) NIC-D LUAD, correct prediction (b) NIC-A LUAD, correct prediction

(c) NIC-D LUSC, wrong prediction (d) NIC-A LUSC, correct prediction
Figure 4: Two cases from ACDC overlayed with the gradcam and attention heatmaps of the NIC-D (left) and NIC-A
models (right). The blue contours are the pathologist’ tumor annotations.



5. DISCUSSION

Our models achieve AUCs >0.94 on the TCGA+CPTAC testsets, the MICCAI and the Radboud60 cohorts. The
performance on the ACDC resections is slightly lower. This might indicate that this cohort is more different
from the TCGA+CPTAC data than the other datasets. Despite the lower AUC value of 0.84-0.85 on the
ACDC biopsies, this shows the applicability of the models solely trained on resections to biopsies, albeit with a
performance drop of 5-10%. This can be improved in the future by adding cases of biopsies to the training set.
Except for ACDC, there is no drop in performance when applying the model to the independent, external cohorts,
suggesting that the model is mostly center-independent. The reason for such a robustness might be attributed to
the encoder, which was trained on histo-pathological multi-centric data, implicitly providing a certain degree of
invariability regarding color staining variations. It is hereby of note that the encoder was not trained on lung data
and also not to differentiate between different cancer types. Nevertheless, the encoding experimentally showed to
contain enough information to discriminate between LUAD and LUSC.
The attention-based architecture of NIC-A performs better on the evaluation datasets then the feature-oriented
architecture of NIC-D. This indicates that learning simple features from a few attended patches generalizes in this
case better then trying to learn more complex features. If the encoder provides a good enough representation,
more complex features might not be necessary and lead to a brittle classifier. Since for training only two
thousand labels are used, the biggest danger is overfitting. The main measures against it in our approach are the
encoding-augmentations and low classifier complexity with less then 200,000 parameters. A further reduction of
parameters led to a decreased performance in preliminary experiments.
The gradcam and attention visualizations revealed very different attention patterns in the architectures despite
relative similar performance results. This difference is probably due to the global max-pooling in NIC-D
and attention pooling in NIC-A. Both pooling operations endorse attention sparseness, since the network can
concentrate on a few features and patches instead of having to include all patches into the decision as in the
case of average pooling. In the optimal case we would expect the models to focus on the cancer areas and ignore
everything else. This did not happen here and might require additional model adaptations and constraints if set
as a goal. An interesting scenario would be to try to combine a patch-level classifier when some annotations are
available with a slide-level classifier. In NIC, this is currently only possible indirectly by using the patch-level
classifier as encoder (without the final classification layers).
NIC can be seen not only as a concrete architecture, but also as a framework encompassing all methods working
on compressed slides. From that perspective CLAM could be also considered as an instance of NIC with additional
assumptions and constraints on patch-level learning. Both methods require all patches of a slide to be loaded
into memory and could not work on uncompressed patches (without severe technical adaptations or very large
memory).

NIC approaches the state-of-the-art performance of the recently presented CLAM method (reported AUC
of 0.956 on their TCGA+CPTAC test-splits) without imposing as many assumptions on the data. The NIC-D
model uses a tiny DenseNet classifier with good results. They are improved upon with the NIC-A model,
which incorporates the attention-weighted pooling of CLAM, but without using attention-based clustering. The
NIC-framework can be adapted to the task at hand with, i.e. attention, while keeping its flexibility for larger
spatial pattern recognition. Additional assumptions on the data, such as the number of patches important for
classification are not imposed. A direct methodical comparison to the full CLAM method is made difficult by
different preprocessing steps and different encoders. The encoder used in this work was trained on histopathological
images with a relative high compression factor of 384x (from 128x128x3 patches to a 128-length vector) while
CLAM uses an ImageNet-pretrained encoder with a compression factor of 192x (from 256x256x3 patches to
a 1024-length vector). In future work we want to analyse the individual contributions of the encoder and the
classifier to the performance, carry out a thorough comparison between NIC and CLAM and extend the training
set and the evaluation to a larger number of lung biopsies.
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